703 research outputs found

    Colors and Mass-to-Light Ratios of Bulges and Disks of Nearby Spiral Galaxies

    Full text link
    We investigate colors and mass-to-light ratios (M/LM/Ls) of the bulges and disks for 28 nearby spiral galaxies with various morphological types of Sab to Scd, using images in optical and near-infrared (VV, II, and JJ) bands and published rotation curves. It is shown that the observed colors and M/LM/Ls generally agree with the galaxy formation model with an exponentially declining star formation rate and shallow slope (ex. Scalo) initial mass function (IMF) for both the bulges and the disks. We find that the bulge M/LM/L is generally higher than the disk M/LM/L and that the galaxies with larger bulge-to-total luminosity ratio tend to have a smaller bulge M/LM/L. The fact indicates that the luminosity-weighted average age of bulges for early-type spirals is younger than that of later-type spirals. These results support a formation scenario that produces young stars for the bulges of middle-type and early-type spirals.Comment: 33 pages, 24 figures, PASJ accepte

    Resistivity, Seebeck coefficient, and thermal conductivity of platinum at high pressure and temperature

    Get PDF
    Platinum (Pt) is one of the most widely used functional materials for high-pressure and high-temperature experiments. Despite the crucial importance of its transport properties, both experimental and theoretical studies are very limited. In this study, we conducted density functional theory calculations on the electrical resistivity, the Seebeck coefficient, and the thermal conductivity of solid face-centered cubic Pt at pressures up to 200 GPa and temperatures up to 4800 K by using the Kubo-Greenwood formula. The thermal lattice displacements were treated within the alloy analogy, which is represented by means of the Korringa-Kohn-Rostoker method with the coherent potential approximation. The electrical resistivity decreases with pressure and increases with temperature. These two conflicting effects yield a constant resistivity of similar to 70 mu Omega cm along the melting curve. Both pressure and temperature effects enhance the thermal conductivity at low temperatures, but the temperature effect becomes weaker at high temperatures. Although the pressure dependence of the Seebeck coefficient is negligibly small at temperatures below similar to 1500 K, it becomes larger at higher temperatures. It requires a calibration of a thermocouple such as Pt-Rh in high-pressure and -temperature experiments

    Impurity Resistivity of fcc and hcp Fe-Based Alloys: Thermal Stratification at the Top of the Core of Super-Earths

    Get PDF
    It is widely known that the Earth's Fe dominant core contains a certain amount of light elements such as H, C, N, O, Si, and S. We report the results of first-principles calculations on the band structure and the impurity resistivity of substitutionally disordered hcp and fcc Fe based alloys. The calculation was conducted by using the AkaiKKR (machikaneyama) package, which employed the Korringa-Kohn-Rostoker (KKR) method with the atomic sphere approximation (ASA). The local density approximation (LDA) was adopted for the exchange-correlation potential. The coherent potential approximation (CPA) was used to treat substitutional disorder effect. The impurity resistivity is calculated from the Kubo-Greenwood formula with the vertex correction. In dilute alloys with 1 at. % impurity concentration, calculated impurity resistivities of C, N, O, S are comparable to that of Si. On the other hand, in concentrated alloys up to 30 at. %, Si impurity resistivity is the highest followed by C impurity resistivity. Ni impurity resistivity is the smallest. N, O, and S impurity resistivities lie between Si and Ni. Impurity resistivities of hcp-based alloys show systematically higher values than fcc alloys. We also calculated the electronic specific heat from the density of states (DOS). For pure Fe, the results show the deviation from the Sommerfeld value at high temperature, which is consistent with previous calculation. However, the degree of deviation becomes smaller with increasing impurity concentration. The violation of the Sommerfeld expansion is one of the possible sources of the violation of the Wiedemann-Franz law, but the present results could not resolve the inconsistency between recent electrical resistivity and thermal conductivity measurements. Based on the present thermal conductivity model, we calculated the conductive heat flux at the top of terrestrial cores, which is comparable to the heat flux across the thermal boundary layer at the bottom of the mantle. This indicates that the thermal stratification may develop at the top of the liquid core of super-Earths, and hence, chemical buoyancies associated with the inner core growth and/or precipitations are required to generate the global magnetic field through the geodynamo

    Electrical Resistivity of Cu and Au at High Pressure above 5 GPa: Implications for the Constant Electrical Resistivity Theory along the Melting Curve of the Simple Metals

    Get PDF
    The electrical resistivity of solid and liquid Cu and Au were measured at high pressures from 6 up to 12 GPa and temperatures & SIM;150 K above melting. The resistivity of the metals was also measured as a function of pressure at room temperature. Their resistivity decreased and increased with increasing pressure and temperature, respectively. With increasing pressure at room temperature, we observed a sharp reduction in the magnitude of resistivity at & SIM;4 GPa in both metals. In comparison with 1 atm data and relatively lower pressure data from previous studies, our measured temperature-dependent resistivity in the solid and liquid states show a similar trend. The observed melting temperatures at various fixed pressure are in reasonable agreement with previous experimental and theoretical studies. Along the melting curve, the present study found the resistivity to be constant within the range of our investigated pressure (6-12 GPa) in agreement with the theoretical prediction. Our results indicate that the invariant resistivity theory could apply to the simple metals but at higher pressure above 5 GPa. These results were discussed in terms of the saturation of the dominant nuclear screening effect caused by the increasing difference in energy level between the Fermi level and the d-band with increasing pressure

    The effects of ferromagnetism and interstitial hydrogen on the equation of states of hcp and dhcp FeHx: Implications for the Earth's inner core age

    Get PDF
    Hydrogen has been considered as an important candidate of light elements in the Earth's core. Because iron hydrides are unquenchable, hydrogen content is usually estimated from in situ X-ray diffraction measurements that assume the following linear relation: x = (V-FeHx - V-Fe)/Delta V-H, where x is the hydrogen content, Delta V-H is the volume expansion caused by unit concentration of hydrogen, and V-FeHx and V-Fe are volumes of FeHx and pure iron, respectively. To verify the linear relationship, we computed the equation of states of hexagonal iron with interstitial hydrogen by using the Korringa-Kohn-Rostoker method with the coherent potential approximation (KKR-CPA). The results indicate a discontinuous volume change at the magnetic transition and almost no compositional (x) dependence in the ferromagnetic phase at 20 GPa, whereas the linearity is confirmed in the non-magnetic phase. In addition to their effect on the density-composition relationship in the Fe-FeHx system, which is important for estimating the hydrogen incorporation in planetary cores, the magnetism and interstitial hydrogen also affect the electrical resistivity of FeHx. The thermal conductivity can be calculated from the electrical resistivity by using the Wiedemann-Franz law, which is a critical parameter for modeling the thermal evolution of the Earth. Assuming an Fe1-ySiyHx ternary outer core model (0.0 <= x <= 0.7), we calculated the thermal conductivity and the age of the inner core. The resultant thermal conductivity is similar to 100 W/m/K and the maximum inner core age ranges from 0.49 to 0.86 Gyr

    Electrical conductivity of basaltic and carbonatite melt-bearing peridotites at high pressures: Implications for melt distribution and melt fraction in the upper mantle

    Get PDF
    International audienceElectrical impedance measurements were performed on two types of partial molten samples with basaltic and carbonatitic melts in a Kawai-type multi-anvil apparatus in order to investigate melt fraction-conductivity relationships and melt distribution of the partial molten mantle peridotite under high pressure. The silicate samples were composed of San Carlos olivine with various amounts of mid-ocean ridge basalt (MORB), and the carbonate samples were a mixture of San Carlos olivine with various amounts of carbonatite. High-pressure experiments on the silicate and carbonate systems were performed up to 1600 K at 1.5 GPa and up to at least 1650 K at 3 GPa, respectively. The sample conductivity increased with increasing melt fraction. Carbonatite-bearing samples show approximately one order of magnitude higher conductivity than basalt-bearing ones at the similar melt fraction. A linear relationship between log conductivity (σbulk) and log melt fraction (phi) can be expressed well by the Archie's law (Archie, 1942) (σbulk/σmelt = Cphin) with parameters C = 0.68 and 0.97, n = 0.87 and 1.13 for silicate and carbonate systems, respectively. Comparison of the electrical conductivity data with theoretical predictions for melt distribution indicates that the model assuming that the grain boundary is completely wetted by melt is the most preferable melt geometry. The gradual change of conductivity with melt fraction suggests no permeability jump due to melt percolation at a certain melt fraction. The melt fraction of the partial molten region in the upper mantle can be estimated to be 1-3% and not, vert, similar 0.3% for basaltic melt and carbonatite melt, respectively
    corecore